Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
A network of more than 130 permanent vegetation plots provides long-term information on patterns and rates of forest succession in most of the major forest zones of the Pacific Northwest. The plot network extends from the coast to the Cascades in western Oregon and Washington and east to ponderosa pine forests in the Oregon Cascades. Most of the permanent plots were established during two intervals: from 1910 to 1948, and from 1970 to 1989. The earlier plots were established by U.S. Forest Service researchers to quantify timber growth in young stands of important commercial species and to help answer other applied forestry questions. The more recent period of plot establishment began under the Coniferous Forest Biome program of the International Biological Program during the 1970s, and continued under the Long-term Ecological Research program. A broader set of objectives motivated plot establishment since 1970, especially quantification of composition, structure, and population and ecosystem dynamics of natural forests. Plots have one of three spatial arrangements: (1) contiguous rectangles subjectively placed within an area of homogeneous forest; (2) circular plots subjectively placed within an area of homogeneous forest; and (3) circular plots systematically located on long transects to sample an entire watershed, ridge, or reserve. Rectangular study areas are mostly 1.0 ha or 0.4 ha (1.0 ac) in size (slope-corrected). Circular plots are 0.1 ha (0.247 ac), not corrected for slope. The tree stratum is the focus of work in closed-forest study areas. All trees larger than a minimum diameter (5 cm for most areas) are permanently tagged. Plots are censused every 5 or 6 years. Attributes measured or assessed at each census include tree diameter, tree vigor, and the condition of the crown and stem. The same attributes are recorded for trees (ingrowth) that have exceeded the minimum diameter since the previous census. In many plots tree locations are surveyed to provide a plot-specific x-y location. A mortality assessment is done for trees that have died since the previous census. The assessment characterizes rooting, stem, and crown condition, obvious signs of distress or disturbance, and the apparent predisposing and proximate causes of tree death.more » « less
-
A network of more than 130 permanent vegetation plots provides long-term information on patterns and rates of forest succession in most of the major forest zones of the Pacific Northwest. The plot network extends from the coast to the Cascades in western Oregon and Washington and east to ponderosa pine forests in the Oregon Cascades. Most of the permanent plots were established during two intervals: from 1910 to 1948, and from 1970 to 1989. The earlier plots were established by U.S. Forest Service researchers to quantify timber growth in young stands of important commercial species and to help answer other applied forestry questions. The more recent period of plot establishment began under the Coniferous Forest Biome program of the International Biological Program during the 1970s, and continued under the Long-term Ecological Research program. A broader set of objectives motivated plot establishment since 1970, especially quantification of composition, structure, and population and ecosystem dynamics of natural forests. Plots have one of three spatial arrangements: (1) contiguous rectangles subjectively placed within an area of homogeneous forest; (2) circular plots subjectively placed within an area of homogeneous forest; and (3) circular plots systematically located on long transects to sample an entire watershed, ridge, or reserve. Rectangular study areas are mostly 1.0 ha or 0.4 ha (1.0 ac) in size (slope-corrected). Circular plots are 0.1 ha (0.247 ac), not corrected for slope. The tree stratum is the focus of work in closed-forest study areas. All trees larger than a minimum diameter (5 cm for most areas) are permanently tagged. Plots are censused every 5 or 6 years. Attributes measured or assessed at each census include tree diameter, tree vigor, and the condition of the crown and stem. The same attributes are recorded for trees (ingrowth) that have exceeded the minimum diameter since the previous census. In many plots tree locations are surveyed to provide a plot-specific x-y location. A mortality assessment is done for trees that have died since the previous census. The assessment characterizes rooting, stem, and crown condition, obvious signs of distress or disturbance, and the apparent predisposing and proximate causes of tree death.more » « less
-
ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.more » « less
-
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.more » « less
-
Abstract Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.more » « less
An official website of the United States government
